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Abstract

7"hi,s paper pTr,scnt,s a formPdation .frrr the idc?_tiJication of linear

m'ulti_,arioblc ,s,q,stcm,s from .single or multiple sets of i?_,put-output d_ta.

The ,s,+lstcm, input-o_tttnzt rclotion,d_q_ i,_ _:g_w!,s,scd in lcr?ns of +m oh-

,server, 'whh;h i,s made a,sy?nptoticoll!] ,_tablc by ++,_embedded cigeT_alu+:

assignmcrtt procedure. The prescribed ( igcnvalucs for the obscr+,cr mall
be veal, complc.r, mixed real a_zd comph::r, or zero. h_, thi,s .fo?'m+datio_z,

tit+' Alarko_ para?rzet( r,s of the observer arc idcntiJicd from mpPlt-otzttr+tl

data. The Ahrrkov parameters of the oct+ml .system are then r+covcrcd

from thos+ of the oh.server +rod u.scd to obt_iT_ a .state ,sp, cc model of tt_+_

.sy.stc,m by ,stamhu'd realization1 tectmiquc.s. The bash: mtdhcmalical for-
mu, lalioT_ is derived, and c:rtensive mm.:ric.J c:ramplc,s _t,smg ,s'i_nulal+ d

noi,sc-,frcc drd. arc prcm_nled to ill'_tst'mtc the p_wpo,_cd 'method.
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auto-regressive moving average

Eigensystem Realization Algorithm

multiple-input multiple-output

single-input single-output

Introduction

The aim of learning identification is to provide methods to improve identification of the

system model as additional information about the system becomes available. The techniques

are in the time domain, and the system information comes in the form of input-output data

from either nmltiple experiments or a single experiment of extended duration. Originally,

the idea of learning identification was motivated by the fact that for system identification of

flexible structures, multiple experiments are often performed with the hope that the averaged

data can reduce the effects of irregularities such as measurement noises, repetitive disturbances,

and slight nonlinearities. This motivates the development of learning identification to improve

identification results effectively from multiple experiments. An early technique for identification

of parameters from multiple experiments was formulated in reference 1. Learning identification

in the present form identifies the Markov parameters from general input-output data (ref. 2). The

Markov parameters are then used to obtain a state space model of the system by a realization

procedure, e.g., the Eigensystem Realization Algorithm (ERA) (refs. 3 and 4). The learning

identification procedures presented in reference 2 require input-output data from a large number

of experiments of generally short, duration. The procedures identify a,s many Markov parameters

as the number of data samples in each experiment, and the number of data samples that can be

used is constrained by the number of Markov parameters desired to be identified. In practice,

there may be substantially more data samples in each experiment than the number of desired

Markov parameters. Therefore, these techniques are not effMent in the sense that they do not

necessarily make use of all available input-output data. This motivates the development of

identification algorithms from a single set of input-output data of extended duration. Learning

identification is closely related in concept and technique to learning control, where the motivation

is to develop control laws that improve tracking error based on repeated execution of a task

(refs. 5 11).

An identification procedure from a single set of input-output data is developed in reference 12

by means of an auto-regressive moving average (ARMA) description of the original system

in state space format via an observer. An important distinguishing feature of the approach

presented in reference 12 as opposed to previous development is that the system is identified

indirectly by an observer, which is made asymptotically stable by an eigenvalue assignment

procedure. The discrete-time eigenvalues are required to be real, distinct, with magnitudes less

than one. The recursive formulation of reference 12 extends the repetition domain concept used

in learning control and identification to shifting time intervals. It is based on procedures that

identify system Markov parameters for indirect learning control and repetitive control (refs. 9

and 10). The use of Markov parameters in system identification is discussed in reference 13. In

this paper, the identification technique is generalized to allow assignment of complex eigenvalues.

8



This generalizationis particularly important whentile orderof the systemis large, sinceit
permitsa moreevendistribution of asymptoticallystableeigenvaluesinsidethe unit circleby
usingtheentirecomplexplane.

The basiccontributionsof this paperareasfollows:First, a simplifiedreformulationof the
original identificationalgorithmwith placementof real eigenwduesis presented.Second,the
formulationis extendedto tile caseof complexeigenvalueassignment,which is alsoapplicable
to the generalcaseof assigningboth real and complexeigenvalues.Third, a versionof this
identificationprocedureusingadeadbeatobserverwith polesplacedat.tile origin is formulated.
Thiseaseisof particularinterestsinceit inakesuseof a minimumnumberof datasaml)les,and
tile numberof identifiedobserverMarkovparametersare reducedto a minimumset. Fourth,
anextensivenumericalstudy is providedto illustratethe basiccharacteristicsof the algorithm.
Tile deterministictechniquedevelopedhereis applicablefor data fronl either a singleset or
multiplesetsof experiments.Becauseof tile conlplexit,iesin thefornmlationof tile identitication
algorithms,the easeof single-inputsingle-outi)utsystemswill t)e first described.The results
are thenextendedto tile caseof multiple-inputimfltiple-outputsystems.This t)at)ergivesa
moredetailedpresentationof the resultsin reference14,with ad(titionalexamples.In or(ler
to study tile exactnatureof tile identificat,ion t)roce(tureunderidealcircuinstances,this lmper
is confinedto purelydeternfinisticresults.In tile presenceof processandmeasurement,noises,
therelationshipbetweentile identificationalgorithmwith adeartbeatobserverpresente(tin this
paperandthestochasticKalmanfilter algorithinof reference15isestablishedin reference16.A
procedureto improveobserverandKahnanfilter identificationresultsbywhiteningtheresidual
sequenceis presentedin reference17. Oftenof interest in practiceis the identificationof a
modelin a prescribedfrequencyrange. Sucha developmentof the algorithm is formulatedin
reference18.

Tile generaloutlineof thepaperisasfollows.Theprocedurewith realeigenvahleassignment,
which is first presentedin reference12, is reformulatedhereusinga.modifiedmathematical
formulation. The modifiedfornmlationallowsdirect,extensionof the procedureto the case

with complex eigenvahle assignment. A special case of the identification procedure when all

eigenvalues are placed at the origin is then presented. For clarity, the formulation for single-

input single-output systems is presented in tile main body of the paper, except for the case of

mixed real and complex eigenvalues assignment, which is presented in appendix A. Extensions

of the identification procedure to multiple-input multiple-output systems are parallel to the

developments for the single-input single-output case. Tile multivariable case is presented

in appendix B. The truss structure used in the numerical example section is described in

appendix C.

Mathematical Preliminaries

The following general mathematical formulation is applicable to both single-input single-

output (SISO) and multiple-input multiple-output (MIMO) systems. This section introduces

the basic concepts an<t establishes some general mathematical relations, which are used to derive

tile identification algorithm in subsequent sections.

System Description

In this section, tile relationship between the state space model and a particular auto-regressive

moving average (ARMA) model of a linear system is presented. This relationship is particularly

9



usefulfor developingan identificationprocedure.First, considerageneraldiscretemultivariable
linearsystemexpressedill tile statespaceformat

x(i + 1) = Ax(i) + Bu(i) I

/y(i) = Cx(i) + Du(i)
(1)

where x(i) E R '_,y(i) C R q,u(i) E R m. Let x(O) denote the initial state at i = O. An input-

output description of the above system can be obtained from equation (1) as

i t

g(i) = CAix(O) + E CAi-r-lBu(r) + Du(i)
T=O

(2)

Note that the frst term on the right-hand side of tile above equation is dependent on the initial

condition z(0). The products CA i-r 1B denoted by Yi r 1, together with D, are known as

the Markov parameters of tile system. From equation (2), tile input-output description of the

system with zero initial conditions becomes

i 1

y(i) = _ Yr'u(i- r - 1) + Du(i)
r=O

(3)

where y(i) is expressed in terms of Y0 up to Yi-1 and the direct transmission term D. In general,

this description requires i + 1 Markov parameters to describe the output at time step i. If the

system is asymptotically stable such that the Markov parameters Yp, Yp+l, Yp+2, --- can be

neglected for some p, then at tittle steps i > p, tile input-output description can be approximated

with a finite set of Markov parameters as

p 1

y(i) _ E I%u(i r - 1) + Du(i)
r=O

(4)

It is important to note that for a finite dimensional system, there is only a finite nulnber of

independent system Markov parameters. Therefore, the system Markov parameters used in the

description of equation (4) are not necessarily independent. For sufficiently damped systems,

equation (4) is a valid description of the input-output relationship provided that p is chosen

sufficiently large such that the approximation holds. However, for lightly damped systems, such

as large flexible space structures, the ARMA model would require a very large number of Markov

paranmters, which would not be computationally attractive for system identification. In fact,

if the system is unstable or marginally stable, such a description is no longer possible. In the

following, a procedure is described to express tile state space model iIl equation (1) as an ARMA

inodel with a finite number of Markov parameters. The Markov parameters can be shown to be

those of an observer system that is made asymptotically stable by eigenvalue assignment. This

observer model is then used to develop an identification method for the system described by

equation (1).

To construct an observer model, add and subtract the term My(i) to the right-hand side of

the state equation in equation (1) to yield

x(i + 1) = Ax(i) + Bu(i) + My(i) - My(i)

= (A + MC)x(i) + (B + MD)u(i) - My(i) (5)

10



Define

Then the original system becomes

m

A = A + M C

= [B + Mz),-MI

J
= _

(G)

x(i + 1) = Ax(i) + B,,(i) I

/y(i) = C:r(i) + Du(i)
(7)

The input-output description of the system with zero initial conditions is

i-1

:t](i) ----E _Ti-r 1 ,'(7) + Du(i)

r=O

(s)

where

}=i-r-1 = CAi-r 1

If the system is made asymptotically stable by placing of the eigenvalues of the matrix ,4

such that the Markov parameters Y,j, Yp+l, Yp+'), .-- can be neglected h)r some p, then at
time steps i > p, the input-output description can be approximated with a reduced set of p + 1

Markov parmneters {Y0, Y=l, ..-, Y--p-l, D}. The following equality

p-- l

y(i) = E Yrv(i- r - 1) + D,,(i)
r=O

_>p) (,a)

then approxiinately holds. If the original system is observable, then for any system inatrix A, it
is always possible to find a nmtrix ._I such that the desired eigenvalues of A are placed in any

particular (symmetric) configuration. For the case of lightly damped systems, this procedure

can transform the set of an otherwise large number of Markov parameters to an approximately

equivalent reduced set {Y0, Y1, -.., Yp 1, D} by selecting appropriate eigenvalues for 74.
Furthermore, for a sufficiently large p, the influence of a nonzero initial condition on the output

at time steps i _> p can be neglected. The model of equation (9) is used to develop the

identification method presented herein, and the eigenvalue assignment step is achieved implicitly

through processing of the measured input-output data. To see that equation (9) is a special auto-
regressive moving average model, it. can be rewritten as

p-1 p-1

y(i) + E C(A + Mc)r M9(i- r- 1) = E C(A + Mc)r(B + MD)u(i- r- 1)+ Du(i)
r=O r 0

(to)

Defining a delay operator q-1 applied to a variable z(i) to be q lz(i) = z(i - 1), the above

equation can be written in the usual deternfinistic AIRMA model format

A(q-1)y(i):B(q 1)u(i) (11)

11



with the polynomials of tile delay operators A (q-l) and B (q-l) given as

A (q -1) = I-{-C_Jq 1 +C--_`hlq-2 +...+C_p-l`hlq p

B(q-') : D+c 'q -1+c B' -2 +... +

whereA=A+MCandB I= B + `hID.

Relations of the System to an Observer Model

The role of the matrix AI in the above development can be interpreted in terms of an observer

model. Consider the system given in equation (1). It has an observer of the form

_(i + 1) = A_(i) + Bu(i) - `h4[y(i) - _(i)]

_(i) = C2(i) + Du(i) (12)

It. can be shown from equations (12) and (1) that

#(i + 1) = A_(i) + Bu(i) - MC[x(i) - _(/)]

= (m + MC)_(i) + Bu(i) - M[y(i) - Du(i)]

= (A + MC)_(i) + (B + MD)u(i) - My(i) (13)

Defining the state estimation error _(i) = x(i) - "_(i), the equation that governs _(i) is

_(i + 1) = Ax(i) + Bu(i) - [(A + `hlC)_(i) + (B + MD)u(i) - `hly(i)]

= (A + (14)

If system (1) is observable, then .hi may be chosen to place the eigenvalues of A + MC in any

desired (symmetric) configuration. In particular, they will be placed inside the unit circle in the

complex plane. From equation (14), if M is chosen such that A + MC is asymptotically stable,

then lim _(i) = 0; i.e., the estimated state _(i) converges to the true state x(i) as i approaches
i---+oc

infinity. Equation (la) then becomes

x(i + 1) = (A + MC)x(i) + (B + MD)u(i) - My(i) (15)

which is exactly the same as equation (5).

From this analysis matrix ]ti can be interpreted as an observer gain. The parameters

Yi-r-1 -- C-Ai-r-1 _ in equation (8) are then the Markov parameters of an observer system;

hence they are now reh'rred to as observer Markov parameters. In the identification process,

these are the parameters to be identified. Once they are identified, the actual system Markov

parameters can be recovered. There is an algebraic relationship between the Markov parameters

of the observer systein and those of the actual system. This result is established in the following

section.

Relations Between the Markov Parameters of the Observer and the Actual System

As before, let the Markov parameters of the observer system be denoted by Yr, and the

Markov parameters of the actual system by Yr. Recall that

12



Yr = CA r B

= IC(A + ._1c)r(B + ,_Ib),-C(A + Mc)rM]

_[v(rl) y (2)] (16)

From the second equation in equation (16), the Markov parameter CB of the system is simply

Yo = cB = c(B + MI)) - (CM)D

: rl, +rl} D (lr)

To obtain the Markov parameter CAB, first consider the product Y1 (1)

YI 1) = C(A + MC)(B + MD)

= CAB + CMCB + C(A + MC)MD

Hence

Y1 = CAB

_(1) W/(2)v 12)D= 1 +" 0 '[)+Y

(1)
Similarly, to obtain the Markov parameter CA2B, consi(ter the product Y2

y_l) = C(A + MC)2(B + MD)

= C(A 2 + MCA + AMC + MCMC)(B + MD)

CA2B + CMCAB + C(A + MC)MCB + C(A + MC)-_ ID

Therefore,

is)

Y2 = C A2B

= Y_]) - CMCAB - C(A + MC)MCB - C(A + 2_IC)25ID

--- V_ 1) ÷ Y-I)2)Y1 + Y_2)Y 0 + Y_2)D (19)

By induction, the general relationship between the actual system Markov parameters and the

observer Markov parameters can be shown to be

7- 1

rr ---- g(1) + Z -(2)gT-igi | -{- Y(2)D (20)

i 0

For a noise-free finite-dimensional system,

Markov parameters is adequate to deduce a

Physical aspects of the model such as natural
then be found.

knowledge of a sufficient number of actual syst.em

state space realization of the system of interest.

frequencies, dainping ratios, and mode shapes can

13



Identification Theory for Single-Input Single-Output Systems

In tile fl)llowing, an identification method is developed to identify the coefficients of an ARMA

model that is made asymptotically stable by an embedded eigenvalue assignment procedure. Tile
coefficients of the ARMA model are precisely the observer Markov parameters formulated in tile

above section. For simplicity, consider the case of a single-input single-output system in the

state space format:

x(i + 1) = Ax(i) + bu(i)

y(i) = cx(,:) + (21)

where x(i) E R '_, and u(i) and g(i) are scalars. The system inatrix .4 is an n x n matrix, b an
n x 1 column vector, c a 1 x 'n row vector, and the direct transmission term d is a scalar. The

input-outtmt description of this system is given as in equation (9):

p 1

y(i) = E }Trv(i - T - 1) + du(i)
T={}

(22)

where

}7r = cA r b = c(A + mc)r[b + md,-m] = [cA rb ',-c-Arm] (23)

The observer gain 'm in this case is an n × 1 cohmm vector. Recall that v(i) contains both the

input 'u(i) and the output y(i). For i >_ p, equation (22) can be rewritten as an approximate
ARMA model:

p-1 p-1

g(i) = E(cArb')u (i - 7- - 1) + du(i) - E(cArm) y (i - r - 1)
r 0 7=0

(24)

Derived in the following section is an algorithm that. computes the coefficients cA_rb' and cA rrn

of the ARMA model in equation (24) and simultaneously places the eigenvalues of A in prescribed
locations so as to make the ARMA model asymptotically stable. These eigenvalues may be real,

complex conjugate pairs, a combination of both, or zero (deadbeat).

SISO Real Eigenvalue Assignment

This is the simplest case, where all the prescribed eigcnvalues are real and distinct. The

eigenvalue assignment procedure can be derived by noting that for desired real and distinct

eigenvalues of A, one has for some nonsingular matrix T

3-= :r- AT (25)

where A is a diagonal lnatrix of 'r_prescribed eigenvalues,

A=
A2

(26)
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For simplicity, the blank spaces denote zero elements. Then the products cA %I and cA rm

t)ecoine

c]rb ' = cT lArTb' c_4rm = cT-1ArTm (27')

If the elements of c* -= cT-1. b* = Tb r and m* -= Tm are written explicitly, as

F
(;* | * *

= C 1 C2[
b* z

b_

b,*,

I 7t_

I roT;

* (2s)Tit

I 77)_

then tile product cA rb' in equation (24) nlay be expressed as

c]rb t = c*Arb * = [c_b* 1

Similarly,,

c_b;

- [cA rm = -c*ATm * = -- C 1.m*] --c_tT,_

With the following simplified notations

].* a)*

A_
AT

,* * ] 2

.... (7_ I7_ J

(29)

(ao)

=[ ** **]a T c_b*1 c2b2". %bn

= --c177_ 1 --c27rt 2 .... (7_7_tr_

T

(31)

equation (24) becomes

p-1 p-1

y(i) = c_T E "_(r)u(i -- 7- -- 1) + /3T _ )_(r)y(i -- r -- 1) + du(i)
r=0 v=0

or simply

y(i) = _Tr(i - 1)

(32)

(33)

15



which is in linearform with the unknownparametersin _T _T andd with

7T= Io!T [jT d] F(i- 1) =

7

0(i - 1) [

]_(i- 1) (34)

where

p_l /
O(i - 1) = _ A(r)u(i - 7- - 1) = .,_u_(i - p)

7=0

p--1

_(i 1) = E A(r)y(i r 1) = _y(i-p)
T=0

(35)

The matrix ._ is a Vandermonde-like matrix of prescribed real eigenvahms of magnitudes less

than 1:

Ap-1 Ap-2 "" A1 1

Ap-1 A_ 2 ... A2 12

Atp 1 ,,n)'P- 2 ... An 1

(36)

and the p x 1 input and output history vectors u_(i - p) and y(i - p) are defined as

u(i - p) :

.(i - p)

.(i - 2)

u(i- 1)

y(i - p) =
y(i - 2)

y(i- 1)

(37)

Note that equation (33) is in linear form; thus the unknown observer parameter vector 7

can be solved for directly from input-output data. For on-line computation, however, recursive

solution is often preferred. Let _(i) denote the estimated parameter vector at time step i. The

standard recursive least-squares solution to equation (33) is simply

"_(i) = _(i - 1) +

_(i- 1) = _(i-2)-
_(i- 2)F(i- 1) [y(i)- _r(i-- 1)r(i- 1)] }

1 + F(i 71_T--_--2_(i- 1)

,_(i - 2)F(i - 1)F(i - 1)TN(i - 2)

1 + P(i - 1)T_(i -- 2)p(i - 1)

(38)

with an arbitrary initial guess _(0), and N(-1) is any positive definite matrix. Other recursive

parameter estimation algorithms may be used to replace the standard least squares at this step,

e.g., the projection or instrumental variable methods (refs. 19 and 20). The above algorithm

* * * * (i=l 2, .. n),identifies the parameter vector 7, which consists of the products c i b i , -c i m i , •,
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andd. These products together with tile assigned eigcnvalues Ai (i = 1, 2 .... , _) can be used

to reconstruct the observer Markov parameters Yr (r = 0, 1, 2, ...) as

Y7- = cA T b = c-A T-[bI, -rn]

(39)

Finally, the actual system Markov parameters can then be recovered from the above recon-

structed observer Markov parameters according to equation (20):

where Y (7-1)

7--1

i=()

f7-1

i=0

(40)

= _T/k(T) and _(2) = 3TA(7-) '

SISO Complex Eigenvalue Assignment

With the general mathematical framework developed for real eigenvahle a,ssignment, the

procedure for complex eigenvalue assignment can be similarly derived by replacing equations (25)

and (26) with their counterparts for complex conjugate pairs of eigenvalues hi = ai + J_i
(i = 1, 2 ..... n/2). Namely, A = T-1AcT, and

AC z

I o.1 031 1--031 (71

(41)
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Furthermore,associatedwith the complexconjugatepair Ai = cri -t-jwi, write

ai cdi
=

--co i o i
(42)

then the product c-Arb I in equation (24) becomes

cA rb' = c*Arb *

_-_T)(qb;+ c_b_)+_}T)(qb_- c_b;)+4 _)(_:>_+ c>_)+4 T)('_4"**- qb_)**

-+- • • - q- rrl_ ) (c,* 1b,__l -4- (',*b,_,) q- co(,7_ (c_*_ 1b,_ -c,*_br*_l )

.T_(T)

Similarly,

(43)

cA TT[I, * T *= c &,m

= ((:l'trtl q- (.'27rt2) q- a3 (elm 2 -- C2ml) + (7 r) (c3m3, , + c4m4), , + _' r) @*m*t_3 '4 -- c4m3)**

• * * * -- c n lit n 1 )

r [c*lb*l+c_b?2 c_b: c* b...... c" * ]%, = c_b_ ... n-I r,-1 + c,,b,, t,, lbn - ,,bn_ 1

I .......... ], : .... -]- ('71 IrOn

7'

= 2 "'" °'n/2 %_/2 = 1, 0

where

(45)

The elements c_, b_, and rn i (i = 1, 2 .... , n) are defined exactly the same way as in

equations (28), and n is now necessarily even, since all the prescribed eigenvalues must appear

as complex conjugate pairs. Equation (24) now becomes

p-1 p-1

= - A(_-)-'i 1) + du(i)y(i) c_TZA!f)u(i-r 1)+_T Z c YU -r-

v-=0 7-=0

= %.rL.(i- 1) (46)
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whichis in linear form,with

o,(i - 1)

[ .(i)

(47)

where

0c(i - l) = Z A['r)u(i - v - 1) = (3cu(i - p)

r=0

p- 1

r 0

(4s)

Tile matrix Qc is a Vandermonde-like matrix of t)rescribed c()mt)h_x eig(mvalues of magnitudes

less than unity

;.5"(;

(t)- l) olp-2)(71 ...... o-1 1

a; (lp-1 ) w (1t,- 2) ...... _'1 0

crOP-2) o-_P-2)2 ...... cI2 1

w(p-1) w_ p 2)2 ...... _'2 (}

o.(p -1 ) o.(p- 2)
./2 r_/2 ...... or'/2 1

w(z,- i) _,(_,-2)
,,/2 ,,/2 ...... _',,/2 O.

(,m)

and the px 1 input and output history vectors il(i-p) and y(i-p) are defined as in equations (37).

Let _c(i) denote the estimated parameter vector at time step i. The reeursive least-squares

solution for the complex eigenvaluc case is obtained by simply ret)lacing _(i) t)y _'(.(i), F(i - 1)

by rc(i - 1) in equations (38) with an arbitrary initial guess _c(0) given, and !I_(-1) is any

positive definite matrix _0- Any other recursive algorithm may be used to replace the standard

least squares at this step. The algorithm identifies the parameter vector "Yc, which consists of the

product sums and differences c* b* * * * * '*b* c* * -c* _* * 7_* c*t *i-1 i l+Cibi , Ci-lbi -(i i-l, i-ltrt'i-I _ :itTi ' ci-1 ti - i rt'i-I

(i = 1, 2 .... , 7_), and d. These identified parameters, together with the assigned conjugate

pairs of complex eigenvalues Ai (i = 1, 2 .... , n/2), can be used to reconstruct lhe ot)server

system Markov parameters Yr (r = 0, 1, 2, ...)

(50)

Finally, the actual system ikfarkov parameters can then be recovered from the above recon-

structed observer Markov parameters according to equation (20) in the same way _s the real
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eigenvahmcase:

(51)

SISO DeadbeatEigenvalueAssignment

If all theeigenvaluesof tile deterministicobserversystemareplacedat theorigin, then the
Markovparametersof theobserversystemwill becomeidenticallyzeroaftera finitenumberof
timesteps.This is a deadbeatobserver.Specifically,

m

Y._=O (r=n, n+l, n+2, ...) (52)

where n is the order of the system• Let m d denote the deadbeat observer gain, tile expression

relating tile input-output of the system and the corresponding observer Markov paralneter is

given by
n - 1 n- 1

y(i)=E(cArb')u(i-r-1)-E(cArmd)y(i-r-1)+du(i) (53)
r=O r 0

Tile structure of A can be better seen by considering the syst:enl given in equation (21) in

observable canonical form:

AO

0

1 0

1

--a 1

--a 2

-- a3

'. o i

1 -a.

bO z

bl

b2

b3

b?l

Let the observer gain ill observable canonical form be denoted by mo= [ml m2 rn3 -" rn_] T.

The observer system matrix A = Ao + moco is simply

A=

0

1 0

1 0

1 '.

1

--al + r_Zl

-a 2 + m2

--a 3 + m3

-an + rnn

(55)

m

For a prescribed set of eigenvalues Ai for A, the observer gain mo is unique and its elements ar¢ _

given by mi = ai - Pi, where Pi are tile coefficients of the characteristic equation

...... Pn +'"+P2/k+pl =0 (56)

Let ,nod = [m d m d ... rn d]T denote the deadbeat observer gain for the system in observable
canonical form. In the deadbeat case, the characteristic equation is simply An = 0. Hence, Pi = O.
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m_ / = ai. Tile observer system matrix A then becomes

A z

0

1 0

1 0

1 "-

1

In this case, it is convenient to work with tile system in observable canonical form directly. Tho

Markov parameters of the deadbeat observer system can be computed as

YO = cobo = co

r z1 coA bo =

[bo.T,<d.<I
b.-1 + mt__ld -rn_z 1

Yn 1 = (-'o _''-1 bo = [bl + tT_<lld

Y_ = YT_+I = Y_+2 .... 0

<1I

/
(58)

Equation (24) becotnes

_(i)= Z (b,,_,+
r 0

m d r d) u(i -

Defining the parameter vectors

7_-- 1

r- 1) _)-_ md_rY(i - r- 1)+ du(i)
r=0

(59)

d

(60)

equation (59) can then be written as

_(i) = _.(i- _) + ,4ry_(i- ,_)+ d,,(i)

= 7TFd(i- 1) (61)
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v_rhere

L

and the t_ x 1 input and output history vectors ¢(i -n) and y(i - n) are defined as

_.(i - rz) =

-

u(i - 2)

u(i - 1)

y(i - n) =

y(i -

y(i - 2)

y(i- 1)

(62)

(63)

The recursive solution to equation (61) is obtained by simply replacing _(i) by _d(i), and F(i - 1)

by Fd(i- 1) in equations (38). The actual system Markov parameters can be recovered according

to equation (20) as

r-1

= r *r-i--1 + _

i=0

71--1

= -- rnn-rYr-i-1 - n-r_

i o

n- 1

bn- r _ d-- llZn rYT--i--i

i o

(64)

where bn r d= rn,,_ r _ 0, for r = 7_, n + 1 .....

A particular feature of the deadbeat algorithm is that the observer system Markov parameters

are identically zero after a finite nmnber of time steps. The input-output ARMA relation given

in equation (22) or equation (24) used in deriving the algorithm therefore holds exactly. This is

different from the previous cases, where by placing real and complex eigenvalues of magnitudes

less than unity but greater than zero, the ARMA relation only holds approximately. Tile degree

to which the approximation holds depends on the choices of prescribed eigenvalues and the

window width p, i.e., the number of observer Markov parameters retained to maintain a valid

approximation. In the deadbeat case, however, the approximation becomes exact, the window

width p is the order of the system, and the identified parameters contain an exact description

of tile system of interest•

Realization by the Eigensystem Realization Algorithm

A state space model of the system from the recovered Markov parameters can be obtained

by the Eigensystem Realization Algorithm (ERA). The algorithm begins with an r × s block
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datamatrix calledthe Hankelmatrix anddenotedby H(r)

H(T) =

_ Y7-1-1 "'' "_T+,,e--1

)_+1 YT+2 "'" Y_-+._

YT+r 1 Yr+, .... Yr+,'+s-2

(65)

The order of the system is determined by the singular vahle decomposition of H(0),

H(0) = UEV T (66)

where tile cohllnns of U and V are orthonorlnal, E is an n x n diagonal matrix of positive singular

values, and is the order of the systenL Defining a q x rq matrix E_T, and an m x sm matrix

E, T made up of identity and null matrices of the form

a discrete-time minimal order realization of the system can be shown to be

Ar = E-1/2UTH(1)VE-I/2 I

JB r = Z1/2vTEm

C,. = ETq UE 1/2

(6s)

This is the basic ERA formulation. To use ERA in the present identification procedure, the

entries that make up the data matrix given in equation (65) are precisely the recovered system

Markov parameters Yr (7- = 0, 1, 2, ...). For further details on the algorithm, the readers are

referred to various references in the literature, e.g., references 3 and 4.

Computation Steps

This section reviews the b_sic steps involved to implement the identification procedure

developed in this paper. The related equations are identified in each step of the process.

Step 1

Assume an order n for the system to be identified. Choose an order p for the ARMA model,

and select the prescribed eigenvalues of the observer. For the eigenwflue assignment procedures,

p is normally several times larger than the assumed order of the system, n. Specifically, the value

of p chosen must be consistent with the prescribed eigenvalues for the observer, a_s described in

the following:

(a) For real eigenvalues, select n real eigenvalues Ai (i = 1 2, n) such that At ) _ 0.
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(b) For complexeigenvahmstheeigenvaluesmustappearin complexconjugatepairs,
hi = ai :t:jw i (i = 1, 2 .... 7_/2) such that

[]P(_i COl
_0

-w i _ri

(c) For a combination of real and complex eigenvalues, the same rules apply.

(d) For deadbeat observers, however, all eigenvalues are set to be zero, and p is the same as n.

The identification equations for tile deadbeat ease have taken this into account. Therefore,

no explicit specification of the eigenvalues for this case is necessary.

Note that for asymptotic stability, all prescribed real or complex eigenvalues must have

magnitudes less than unity.

Step 2

Compute tile observer parameters. The appropriate recursive equations used for each case

are outlined as follows. For observers with assigned real eigenvahms equations (38) are used for

the SISO case, and equations (B13) are used for the MIMO case. For observers with complex

eigenvalues, the recursive equations are obtained simply by replacing _(i) by _c(i), and r(i - 1)

by Fc(i - 1) in equations (38) for the SISO case, and by replacing __ by __:c, and F(i - 1) by

F_.(i - 1) in equations (B13) for the MIMO case. For observers with mixed real and complex
eigenvalues, replace _(i) by _m(i), and F(i- 1) by Fm(i- 1) in equations (38) for tile SISO

case, and _(i) by _m(i), and F(i - 1) by Fm(i - 1) in equations (B13) for the MIMO case. For

deadbeat observers, the appropriate recursive equations are obtained by replacing _(i) by _d(i),

and F(i - 1) by Fd(i - 1) in equations (38) for the SISO case, and _(i) by _d(i), and Fd(i - 1)

by Fd(i - 1) in equations (B13) for the MIMO case.

Step 3

Reconstruct the observer Markov parameters from tile identified observer parameters. For

observers with real eigenvalues, equation (39) is used for the SISO case, and equation (B14)

is used for the MIMO case. For observers with complex eigenvalues, equation (50) and

equation (B23) are used, respectively. Similarly, for observers with both real and complex

eigenvalues, equation (All) and equation (B31) are used. For deadbeat observers, however, the

identified parameters are precisely the observer Markov parameters, and no reconstruction of

the observer Markov parameters is needed for this case.

Step 4

Recover the system Markov parameters from the observer Markov parameters. The general

equation is given in equation (20)_ which is then specialized to various eases. For observers

with real eigenvalues, equation (40) is used for the SISO case, and equation (B15) is used for

the MIMO case. For observers with complex eigenvalues, equation (51) is used for the SISO

case, and equation (B24) is used for the MIMO case. For observers with both real and complex

eigenvalues, equation (A12) and equation (B32) are used, respectively. For deadbeat observers,

equation (20) directly applies.

Step 5

Realize a state space model for the identified system from the recovered system Markov

parameters in step 4 above. The basic equations for ERA are summarized in equations (65)

to (68).
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Numerical Examples

Thetheoreticaldevelopmentsectionsdiscussedthe useof observersandeigenvahmplacmnent
to recoverthe systemMarkovparameters. The Markovparametersare the pulseresponse
samplesof a linearsystem. The fundamentalideaill the developedidentificationprocedure
is to identify parametersof an observerrather than thoseof the actual system. Promthe
observerparametersthe true systemparameterscanbe recovered.The observereigenvalues
or polesdeterminethe observerpulseresponsedecayrate. Formulationswherethe prescribed
eigenvaluesare real,complex,mix realandcomplex,andzero(deadbeat)havebeenpresented.
By makingthepulseresponseoftheobserversystemdecaysufficientlyfastthroughtheplacement
of its poles,onecantruncatethe responseafter a finite numberof time steps. Becauseof the
differenteigenvalueplacementprocedures,thisapproximationwill resultin differentconvergence
propertiesfor eachrespectivealgorithm.

To study the numericalpropertiesof the identificationprocedure,an analyticalmodelof a
truss structure is used. The lightly dampedstructure,knownas the Mini-Mast (ref. 21) at
NASA LangleyResearchCenter,is modeledby its first five modes,with frequenciesof 0.80,
0.80,4.36,6.10,and 6.16Hz. A moredetaileddescriptionof the systemunderconsiderationis
givenin AppendixC. Theoutputscorrespondto displacementsensors,andthe inputsto torque
actuators.The input-outputdata aresimulatedusingrandominputs for 6 sec.The systemis
discretizedat a samplingrateof 33.3Hz, andan input-outtmthistoryof 200pointsis recorded
for systemidentification,which is performedon a MacintoshIlci computer. The analytical
modelcontainsfivemodes,but practicallyonly threeof them arecontrollableandobservable
fromanygiveninput-outputpair.

Single-Input Single-Output Examples

First, for clarity the case of single-input single-output identification is studied. Basic

characteristics of the identification algorithm can be seen in the SIS() case. For this purpose,

the first input second output pair is used for identification, which results in a system with

essentially three identifiable structural modes, i.e., a sixth-order system. Results for the cases of

real, complex, and deadbeat eigenvahle assignments are presented. The case of mixed real and

complex eigenvalue assignment is omitted here since its numerical properties ma.v t)e deduced

from those of real and complex eigenvalue assignnmnts.

Consider the case of real eigenvalue assigmnent. The identification results for this case are

reported in figures l(a) l(d). Figure l(a) shows the nominal case where six observer poles are

placed at ±0.2, ±0.3, and +0.4. Along with the prescribed pole locations is an estimate of the

number of samples or window width p that it. takes for the observer pulse response to decay to a

negligible value. In this example, the window width is selected to be 40 points wide, i.e., p = 40,

so that (±0.2) p, (±0.3) p, (±0.4)P are negligible. The identification procedure starts with an

initial estimate of the system order, which for the nominal case the assumed order is six, n = 6.

Even though the model used is of 10th-order, from any, input-output pair the effective order of

the system is only 6.

The top left plot of figure l(a) shows convergence histories of the observer parameter values

calculated from the recursive least-squares solution given in equations (38). The constant values

correspond to converged parameters. Since the initial parameters are assumed to be zero, to

start the algorithm, the projection matrix N(-1) is set to a large value to reflect tim degree

of uncertaipty of the initial guess. The plot on the top right shows the square root of the

diagonal elements of the variance or projection nmtrix _(i) after 160 iterations of the recursive

least-squares algorithm. In cases where the exact least-squares solution is obtained and no order

over-specification occurs, the variance matrix approaches zero. In general, the variance matrix

provides a measure of the freedom in the uniqueness of the identified parameters. Note that when
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the identifiedparametersarenot all independentbecauseof orderover-specification,the large
w_riancevaluesdonot implyinaccuraciesin theparameterestimates.Thismerelymeansthat for
thespecifiedorder,the identifiedsetof observerparametersis not unique.Therecursiveleast-
squaressolutionisdrivenby the predictionerror shownin thesecondrowof figure1(a). At any
timestep,the predictionerror isdefinedto be the differencebetweenthetrue output valueand
tile predictedoutput wfluecomputedbasedoil theestimatedmodelavailableat that time step.
Theinitial predictionerroris largebut quicklygoesto zeroastheobserverparametersconverge
to constantvalues. For the caseof real eigenvalueassignment,from the identifiedobserver
parameters,theobserverblarkov parameters are recovered by equation (ag). The actual system

Markov parameters are then computed by equation (40). Using the computed pulse response,

realization of a state-space representation of the system is perforxned using equations (65) (68).

At. this step, the initial assumption made about the system order (r_ = 6) is verified by counting

the nmnber of nonzero singular vahles. Shown in the second row of figure l(a) is a bar chart of

the normalized singular vahms which shows six nonzero singular values.

The top four plots of figure l(a) are indicators as to how well tile parameters are identified.

The bottom four plots show results comparing the identified state space model and the true

system model. Included in this group are comparisons of realized and actual pulse responses;

actual displacement history used in the identification, and its reconstruction using the identified

model; and the frequency response flmctions. There are two curves in each plot; the solid curve

corresponds to actual data and the dashed curve to reconstruction. Wrhen an exact model of the

system is identified, the two sets of curves overlap.

To study the effect of order under-specification, figure l(b) shows the results when the

observer poles are placed on the real axis, as in figure l(a), but the assumed system order

is set to 7_ = 2. This is a case where not enough freedom is allowed in the identification

procedure. The parameter values, shown on the top left of figure l(b), do not tend to constant

values as in figure 1 (a). Although the variance is small, the prediction error shows discrepancies

between the predicted and actual outputs. Realization using the identified parameters results

in a system of order two, as shown by tile singular value plot. When comparing the impulse

responses, it is clear that tile results are in error. So are the reconstructed displacenmnt and

frequency response flmctions. In this case, the algorithm attempts to identify a. sixth-order

system by a second-order model. Figure l(c) shows the results when the assumed system order

is increased to four, 7z = 4. Convergence of the parameters is observed, and the corresponding

variance is small. The prediction error fluctuates about zero. Tile realized system order is four,

as depicted in tile singular value plot. Comparing the tmlse responses shows very snlall errors.

However, the frequency response flmctions show that the identified system (depicted by the

dashed curve) missed the mode with the sInallest contribution to the system response. This is

why the reconstructed displacement, when compared with the actual displacement as shown in

the lower left plot, shows no visible differences. This example suggests a potential application

of the algorithm for identification of reduced order models.

To examine the case of order over-specification, figure 1 (d) shows the results when the obserw, r

poles are also placed on the real axis as before, but the order of tile system is over specified to

be 'l, = 10. Results are similar to those shown in figure l(a), with two important distinctions.

First, the parameter variances are now substantially larger than those in the previous cases; in

fact they are all order of magnitude larger than the identified parameters. Second, the realized

systeIn order is correctly identified to be 6 even though the initial assumed order is 10. Large

variances are expected when the identified parameters are not all linearly independent. When

order over-specification occurs, there are more parameters than necessary to identify the system

exactly. It is important to observe that at the realization step, however, the system and its order

are identified correctly. For the case of SISO identification, if the assumed order is less than

or equal to the true order of the system, as shown in figures l(a) l(c), the algorithm returns
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an identified model with tile same order as assumed. However. if the assumed order is more

than the true order, the algorithm returns a model with the correct mininlal order, as shown

ill figure 1((t). The identification procedure, as mentioned earlier, places the observer poles at,

prescribed locations. To verify the proper eigenvalue placement, thc observer lmlse responses

arc used to realize the observer model, and the recovere(t eigenvalues are found to be identical

to the prescribed values in all cases.

The next group of figures (figs. 2(a) 2(d)) presents results when complex poles are prescribed.

Six complex poles are placed on a circle with a radius r = (1.5 in the complex plane corresponding

to tile same damping level. The window width is selected to be p = 40. The top left

plot shows the parameter convergence histories. The identified parameters are now given by

equation (45) instead of equations (31). The overall perfornmnce given in terms of I)rediction

error, reconstructed resl)onse , t)ulse rest)onse , and frequency response flmctions is similar to that

of the rcal case. Results for the complex case with order under-specification, 7_ = 2, are shown

in figure 2(b). When tile assumed order is increased to four, figure 2(c) shows that the identified

solution lnisses the weakest mode of tile system. Again, this is consistent with previous results.

Ill the complex case when the system order is over specified, l_ = 10, sonic of the t)aralne|l_rs

do not converge, as shown in figure 2{(t). Nevertheless. tile system and its order are identified

correctly,. This points out that there are linearly dependent paranlelers that are being idenlified.

This is also indicated by tile large variances computed.

To study tile eit_ct of truncation error when the Imlse responses have not deeaye(l 1o zero

in the allowed window width, the pole ra(tius in lhe complex case is increased to 0.9 while

maintaining the same window width p = 40. Results in figure 3(a) show the parameter values

drifting, while the variance is relatively small. The correct system order is use(t in this example.

The prediction error is large, and tile realization procedure i(tentifies a fourth-or(h_r system. The

identifie(t tmlse response, the reconstructed output, and the frequency response flmctions are

significantly different Kern those of the actual system. Tile situation can be easily corrected by

increasing the window width to p = 80 to reduc(' the truncation error. This is verified by the
results presented in figure 3(b).

To elinfinate tile truncation error, the observer poles (:all all t)e placed al the origin. This

is known as the deadbeat case because the observer pulse responses will go to zero in exactly

a finite number of time steps. No estimate of the window width is needed, because once an

assumption about the sy'stcm order is made, the window width is automatically fixed. Results

for tile deadbeat case assuming tile correct order are shown ill figure 4(a). These results at'("

sintilar to the real and COnlplex cases, although the identified paramelers are difDrcnt, in all l he

cases discussed, the same input-output t inle histories are used for identification. Figures 4(t))

and 4(c) show tile deadbeat case when tile a.ssuined order is two and four. respectively.

Figure 4(d) depicts results for order over-specification.

As with any nunmrical met:hod, proper conditioning of the data is inll)ortant. When

identifyillg systems where the magnitudes of the int)ut and output values arc orders of magnitude

apart, because of the use of different units for exami)le , proper scaling of the numerical values

is critical. This is true even for simple systems. The results shown here are scaled such that the

input and output values have coat)arable magnitudes prior to application of the algorithm.

Multiple-Input Multiple-Output Examples

Identification of MIMe systems proceeds similarly to the SIS() case. The me(tel is the same,

but now two inputs and two outputs are used for identification. Tile system is now of order 10.

As in the SISO case, 200 data points are used ill the identification algorithm.

First, consider the case where all prescribed observer poles are real. Initially the assumed

order is set to n = 4 with corresponding pole locations at ±0.2 and ±0.3, and the window
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width p is set to 40. The top row of figure 5(a) shows the parameter convergence histories and
the variance distribution for tile least-squares solution. The parameters seem to have reached

constant values, but some variations are still observed. Since the true order is 10, this is a

case where the assumed order is less than tile true order. This lack of freedom in the identified

parameters prevents the prediction error from converging to zero, as shown in the second row of

figure 5(a). Counting the mnnber of nonzero singular values, the identified system order is found

to be eight. The system pulse response, the reconstructed output, and the frequency response

functions are in error. Figure 5(b) shows the results when the assumed order is increased to

six. The parameters converge to constant values but the variances are large. Large variances

indicate that some redundancy in tile identified parameters has occurred. However, this does not

affect the final answers. The prediction error converges to zero, and the system order is correctly

identified to be 10. This is in contrast with the SISO case, where the identified system order does

not exceed the assumed system order. It is important to note that for a given set of poles, the

pole placement problem generally contains an infinite number of solutions for a multiple-output

system. This results in additional freedom in the algorithm that is not present in the SISO case.
It i_s this freedom that allows tile identification of a system with a higher dimension than initially

sought. One interesting aspect of the MINIO case is that when the observer pulse responses are

realized to verify the prescribed pole locations, the apparent observer order is equal to the
assumed order times the number of outputs. The resulting observer poles are those prescribed

initially, but they are repeated as many times as the number of system outputs. A comparison

of the pulse response, the reconstructed response, and the frequency response functions for the

second output shows excellent agreement. Results for the first output arc similar and not shown

here.

Figure 6(a) shows results when the prescribed observer poles are complex. The poles are

distributed evenly in the complex plane on a circle with radius r -- 0.5. The assumed order

is four. As in the real case, the window width p is set to 40. Results are similar to those of

the real case in figure 5(a). Figure 6(b) shows the complex case when the assumed order is set

to six. For the deadbeat algorithm, figures 7(a) and 7(b) show the identification results with

assumed orders of four and six, respectively, when all prescribed poles are placed at the origin.

Perf()rmanee of the identification algorithm is similar to the previously discussed examples. As

in the SISO case, if the assumed order is higher than the true order, the system can still be

correctly identified, and the algorithm returns an identified model of minimal order.

Concluding Remarks

This paper fornmlates an algorithm for identification of linear multivariable systems from

general input-output data. Data from either single or multiple sets of experiments can be used

to identify" or update the system model. For each data set, tile initial condition may be arbitrary

and need not be known. The procedure identifies the Markov parameters of an observer system

instead of those of the actual system. The actual system Niarkov parameters are recovered from

the observer 5,'larkov parameters and then used to realize a minimal state space model of the

system. The embedded eigenvalue assignment procedure is used to specify the observer with

asymptotically stable poles. The prescribed poles may be real, complex, or mixed real and

complex. When all the prescribed poles are placed at the origin, this results in an identification

algorithm with a deadbeat observer. Expressed in linear form, the observer NIarkov parameters
call be solved for in one step for off-line computation, or recursively for on-line computation.

The standard least-squares algorithm, which is used in one step of this identification procedure,

may be replaced by other recursive parameter estimation algorithms. Identification procedures

for both single-input single-output and multiple-input multiple-output systems are formulated,

and numerical examples using noise-free simulated data are presented to illustrate the basic

characteristics of the developed method.
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Appendix A

SISO Mixed Real and Complex Eigenvalue Assignment

The identification procedure with mixed real and coint)lex eigenvahm assignment can t)e

derived ill tile same way as the case with real or complex eigenvahms. Among n t)rescrit)ed

eigenvalues, let nr denote the mnnt)er of prescribed real eigenvahles Ai (i = 1, 2 .... , nr) and

nc the number of prescribed complex eigenvahms, Ai = ai 4- Jw'i (i = 1, 2, ..., 7h,/2). Then
write A = T-1AmT, and

A,, =

_71 t'

(A1)

The product (cA rb') in equation (24) becomes

(c A,,,b )

A[(,Tb_+ A_,,._,t,.:+... + < ,.q,,.b,*,, + _(,')(q,,.+,<,. _+ ,.;,+;,;,,+_)

+J_ (<,+,b,L+,, 4,+,,<,_)+ +_,(+ (,.; ,b; , +<<)+_(') (,.; ,< _,/,,; 1)
• * " lt(/'2 /re ,'9

7' .(T)

Sinfilarly,

(A2)

(_ T II I * 7- *= (c A,,,._ )

Al(:llrl 1 -r- A,;,C2"i1_ 2 + + A,_,.em m,,,. + (%,.+lrn_,_+l + %_+2m.r+2)

+ _{") (,',*,_+,,,,,;,.+.,- 4,.+.,,,,,;,.+,) +... + _,(_),(q, ,,-,; , +,,5-,,*,) + _ (_) (,,,; ,,,,,; 4 ,,,,; , )
It¢,12 n(/2

__ _T_( r )
-,'-,,,/"-, (A3)

where
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and

•.. ( llrbT_r

[ {c* b* c* b*
_:i("= Lv ,,,.+l .,.+_ + .,._-_ ,,_+2j

.... ('llr Trlttr

C*£ - (,,,.<"_,+, +':,.._"'L+d

_ (,* *(q,,.+_b:,r+', ,,,.+'A_.<)

(( T,,.+ 17 /,_r +2 CT_r+97Tl:_r+l )

c'b* _ ]
•.. (c,; _<- ,.... _jj

]
* C*/7 * /"'' (('r*_-l'II,, - ,, /n-l) ]

A!;' Ia{l_' _(lr) cr:_ w:r) "'" a(r) W(T) 1".,./2 .,/2 (al0)=l, _'I0)=0)

(A5)

* be and m_Tile eleinents ci, 7,
equations (28). Equation (24) now becomes

(i = 1, 2 .... , n) are defined exactly tile same way as in

p-1 p-1

y(i) = (_T Z A_r)u(i- _- -- 1) + 3T Z A_'r)9(i- r -- 1) + du(i)

r=(} r=0

_T (i 1)= /m Frn -

which is again in linear form with

r rr,(i - 1 ) =

Ota (i - 1)
pm(i - 1)

,,(i)

= [ T fiT d]7 rrT oe v m

(A6)

(A7)

where

p-1

Om(i- 1)= E A_r)u(i-
r=0

r -- 1) = _.,u(i- p)

p-1

_m(i- 1)= _ A!jT)y(i- r- 1)= _my(i- p)
r=O

(A8)

Tile matrix '_"_sm is a Vandermonde-like matrix of n prescribed real and complex eigenvalues of

inagnitu(les less than unity:

_m = (A9)
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where

z

/_p 1 )_p-2 ... /_1 1

Ap 1 xp-2
2 "'2 • • • A2 1

A{'_,71 Atp72 ... A,,r 1

o-]P -1 ) o-{P 2) ...... 0-1 1

...... o
a_p 1)cr_p-2) ...... a2 1

4 '-_) 4 "-_) ...... _,, o

a(p-1) (p-2)
n_:/2 o-./2 ...... o'm,/2 1

co(p-l) w(p-21
n,/2 n_:/2 ...... wn,'/2 0

(A10)

and the p x 1 input and output history vectors u_(i-p) and y_(i-p) are defined in equations (38).

The standard reeursive least-squares solution for the mixed real and c()mplex eigenvahle case

is obtained by simply replacing the estimated parameter vector _(i) t)y _,,(i), and F(i - 1) t)y

r.,,(i- 1) in equations (38). The observer Markov parameters Yr (7- = 0, 1, 2, ...) can be

reconstructed according to

L Ogti'l "¢_7rl ,_*?rl/tHt

(All)

Finally, the actual system Markov parameters can then be recovered a_s

T_I )Yr = o_T/_ (T) + /_'T .,m *r * 1 4- )_m d (A12)
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Appendix B

Generalization to Multiple-Input Multiple-Output Systems

The developed identification theory for single-input single-output systems can be extended

to the multivariable case. Consider the nmltivariable system in equations (1). The input-output

relation in terms of the Markov parameters of an observer system is given in equation (9), which
can be rewritten in ARMA model form as

p 1 p-1

y(i) = E (CArB') u(i- T- 1)- E (CATAI) y(i- 7- 1)+ Du(i)
T=0 T=0

(B1)

where

Yr = CA r B =
CArB I -CArM] B I=B+MD

A recursive algorithm that computes the matrix coefficients of the ARMA model, and at the

same time places the eigenvalues of A at prescribed locations, is derived ill the following sections.

These eigenvalues again may be real, complex, a combination of both, or zero 'deadbeat).

MIMO Real Eigenvalue Assignment

Let tile prescribed eigenvalues of A = T-1AT be denoted by Ai (i = 1, 2, •

products C-AT-B l and CAr M become

C_-B I = CT-1ArTB t C_r51 = CT-1ArTM

If the elements of C* = CT-1 B* = TB t, and 5I* --- TM are written explicitly

, n). Then the

(B2)

•T m;l b(1)

• r m_2_

C* ['* '* -.. c* ] B*= b(2)= c(1) ('(2) (n) M*= (B3)

where c(i ) denotes the ith cohmm vector of the matrix C*, and b*T(i)and m *T(i)(i = 1, 2 ... , n)
denote the ith row vectors of the matrices B* and M*, respectively, then the products in

equation (B1) may be expressed as

C_r B ¢ = C*Ar B * =

±1,1_

(_)
[ * -*T _* _.*T _* t.*T] _-2,m

¢'(2)_*(2) "" c(n)o(n ) J[ C(1)0(1 ) - (B4)
k

• I
__(_)

ndn
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CA r M = C'ArM * =
* *T _* __*T-c(1)m(1) -c(2)'"(2)

At r)
--1 .(l

x ll J

.* *T "'2,0

-c(,,)m(,,)

A(TI
__n,q

(B5)

_'_,',_ and r_,q)are m×m and q × q diagonal matrices of the eigenvalue Ai repeated mwhere and

q times, respectively i.e.,

),!T)
--z,q

A_
qxq

(B6)

\Vith the following simplifying definitions as ill equations (31)

[ * -*T _.* L*T

_ c(2)°(2) -'.o_= [c(1)o(1 )

* *T .* *T= -c(1)m(a ) -c(2)m(2)

A(T) [A(T) x(T) _(T) ]7It = k--l'tn "'2,m " " " _nm?

,* *T ].... ((,,)m(,,)

T (B7)

equation (B1) becomes

p-1

r 0

p-1

r- 1)+ fl)'_-_ A_r)y(i -
r=O

r-1)+Du(i)

= "rE(/- 1) (B8)

where u(i) and y(i) are m x 1 and q x 1 input and output vectors, respectively. The above
equation is in a linear form with the unknown parameters in the matrices a_, /3, aim D with

_(i - 1)[ct _ D} __F(i-I)= __(i-1)

[ '40

(B9)
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where

and

p-1

e(i-I)= y_ _('),(i- _- i)= __,,,_(i-p)__ "-E'tI_

r:0

p--I

T:0

(p-1)x0'2)... i!1)x(o)]-- "_IH"---_lrt "_m

A(p-1) ,_(p-2) ... x(J) L.×
--ijr_ --],m "--'1jn m

A(p-Z) _(p 2) ... A(I) l._x,.
--2,m "--'2,'m --2.m

__A(p-1) _(r,-'2) . x(1) I.,x
i2 ,HI "_II,ITI " " "-ZII,TTI Tit

(BIO)

(Bll)

In terms of the prescribed eigenvalues, c-A,r_ has the following structure:

k]'trt :

)_p I
2

,_p l
_t

At'_1 1

[1
1

titx t;l

1]., ×._

Similarly,

.,._:q: [)kS P-I) ]kSp-2) .. _k$1) _(_;))]
(B12)

which has the same general structure as _m except the block matrices are of dimensions q x q.

Tim mp x 1 input history vector u(i-p) and the qp x 1 output history vector y(i-p) are defined

tile same way as in equations (37) except that the input u(i) is of dimensions m x 1, and the

output y(i) is of dimensions q x 1. Equation (B8) is in linear form; tile parameter matrix 7 can be
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solved for directly from input-output data. For on-line computation, the recursive least-squares

solution to the parameter matrix 7 is given as

__T(i) = _T(i -- 1) +
_(i- 2)E(i - 1)

1 + F(i - 1)T_(i -- 2)F(i - 1) [y(i) - __(i- 1)F(i - 1)]T

_(i - 1) = _(i - 2) -
R(i - 2)E(i - 1)E(i - 1)v_(i- 2)

1 + F(i - 1)TR(i - 2)F(i - 1)

(Baa)

The observer Markov parameters Yr (r = 0, 1, 2, ...) can be reconstructed according to

[ ]Yr = CA r B = CA r t31 -M

(u14)

Finally, the actual system Markov parameters can then be recovered from the reconstructed

observer Markov parameters according to equation (20) as

r-1

=.(1) vT) v(?)1_r=rr +_ I_ i-l+ D
i 0

1,1 .(T)_ T)D=aA )+_ _-q ,T-i-l+k (B15)

MIMO Complex Eigenvalue Assignment

The complex eigenvalue assignment for the multiple-ini)ut multiple-output case can be derived

by setting A = T 1ACT, where Ac is given as in equation (41). The prescribed complex conjugate

pairs of eigenvalues are denoted Ai = cri ± Jwi (i = l, 2, ..., n/2). Using the sanle notation for

vectors formed by the cohnnns and rows of C* and B*, respectively, the products in equation (B1)

may be expressed as

C_ _B ' =

C-A'M * '- *= C A_ M

a(t_) { * ,r ., ,T'_

,* *T ,* *T

+_':r)(f3)'lll)--((,l)l't(3))+'"

= 7 x(_)
a,'c,,c,q

C'AT, B*

C) I .... . <c._".-) + t<_,>°,-.! ' _,%,/+ t%_l°.,_+" *'t,,,,o_,' +..7 _,,;,I..., .... ,_ 4_iI...,. ,<,,,,<,,)

+w(_) (., ,,'r • .,'r\ (_} (., _,r , .,r\ {_1 ( • " ., ,?r \t<(:,/". -<'1.,_%,))+ +",,,_,t<(. ,)°t,,-,t+ _,, °,,) +%,/_ <'_,,-,?';,f)'(,,_'l,, , )

.(r)

'., ,7' ((2)m(ll) + _c(:_)m(31 +., ,7'<(,)'"(2)- '* ,T cr__) {* *"' _ 4 '"(.,))

+.l_) (<!,, ,1"<,, ,1+ ) +-_(_)_,'2 ((n)'ltl(n) n12 r (l#)?/#{r I 1

(Bl(i)
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where

[ * -*T * t*T * t*T * _*T

_. = [C(1)O(1 ) -I- C(2)O(2 ) C(1)O(2 } -- C(2)O(1 ) "'"

[ * *T * *T * *T ,* *T

_e' = -- [C(l)Tn(l) -[- C(2)7_i(2) C(1)F//'(2) ((2)7/1(1)

L

__(T) [ a(,) aj(,) a(r) w(T) a(') w(_l ]c,m =- --l,m --l,m --2,m --2,m " " " --n/2,m _/2,m J

_A(r) [O.(v),.('r)_("r) (r) ,, O-( r ) aj(r) ] Tr,q = --l,q _---1,q °2,q _----2,q " --n/2,q _/2,q

]

, b,T -- • -*T * t*T • L,T ]C(n-1) (n-l) -k¢(n)O(n) C(_,_ l)O(n) -- C(n)O(n_l )

• *T -- * *T * *T * lrl*7' ]

"'" c(n_l)m(n_l.)+c(r0rn(Tl ) c(n l)rn(r,) --C(n) (n-l)]

a = Im ×m, = 0r,, ×,,,
--, ct] i_rrl

_(r) and (r) _(r) and (r) repeated m
The matrices _/,m _--i m are m x m diagonal matrices formed by o i "Ji

_(r) and (r)times respectively; o i wi are the elements associated with the complex eigenvalue pair

Ai = a i -t-jco i (i = 1, 2 ..., n/2) as defined in equation (42), i.e.,

i

I ]
4

.(_)

?Tl X 1/1TD, X TTL

(B17)

_(r) and (r)
Similar definitions apply for q_/,q _A,q simply by replacing m by q. Equation (B1) now

becomes

p-1 p-1

y(i) = __c E S(r;_u(i-'1-- 1) + flc E "(_) 'i__c,qy(- 7.-1) + Du(i)
_-=0 T=0

= %,Fc(i - 1) (B18)

where

r (i- 1) =
¢c(i - 1) ]
_c(i - 1)

(B19)

The vectors 0c(i - 1) and qVc(i - 1) in equations (B19) are given as

¢_£(i- 1) =

p-1

T=0

7- - 1) = _,mu(i - p)

p-1

pc(i- 1): E A___r)qy(i-

7"=0

7- - 1) = _c,qy_(i - p)

(B20)
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and

_,,,, r.(p-a) x(p-2) x(1) x(()) j

°" (P-l) rY(P-2) o'(1) Im×,,_
--1,Tr_ --1,m ...... --1,m

_(p--]) _(p--2) _(1) 0,,_×,,,
--1,m --1,m " ..... --1 .'m

a(p--1) cr(p 2) c_ (I) Im
--2,m --2m_ ...... --2,m ×n_

a2(p- 1) _d(p 2) _(1) Omxm
---- --2.m --2,m ' ..... _2,v_

a(p-]) c/p-2) or(l)

a,(P- 1) w(P-2) a2( 1)
--.I2,m --_t2,,. " ..... --7_/2,m (L. xm

(B21

and similarly,

(. [X(p 1) _(p-2) . ),(1) (0)]_-c,q = [",:,q _c,q "" "'c,q A__c,q

"o.(P- 1) rz(p-2) _7( 1)
--1,q --1,q ...... --1,q Iqxq

aj(p-1) od(p-2) ,(1)
--1,q --1,q ...... a"i,q Oqxq

a(p-a) or(p-2) cr(1)
--2,q --2,q ...... --2,q Iqxq

co(p-l) _(p-2) a)(1)
---- --2,q --2,q ...... --2,q Oq×q

o.(p- l) a( p 2) o.(1)
--,_/2,q --n/2,q ...... --n/2,q Iq x q

oj(P -I ) od(P -2) od( 1)
--vt/2,q --n/2,q ...... _t/2,q Oqxq

(B22)
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Ill terms of the prescribed complex eigenvalues _--c,m has the following structure:

a(vl l)

a_p 1)

(p 1)

a)(p 1) ]

_/2 .]

0.1P 2)

_Ii_ 21
_d(lt '-2)

o-_P- 2 )

0.(v 2)
ill2

"d(P- 2) 1

7_/2

...... 0.1

...... _)1

...... .2

...... a22

...... 0._1/'2

...... [ _T_/'2

I t

_2

_°n/2

1

I°o,,],,,....

[1,1].......
I°l.......

The structure for _ is similar. The recursive solution to equation (B18) can be obtained by,
--c,q

replacing _ by _c, and E(i - 1) by F_.(i- 1) in equations (B13). The observer Markov parameters

and the actual Markov parameters can then be computed as

Yr=CArB=CAr[B _ -M]

= [ -/_) ,3_/,) ][ _-'cA--c'm ,_c__c,q3=[_(1 ) _(2)
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r 1

: r T rT i 1÷

i=0

(1_'24)

MIMO Mixed Real and Complex Eigenvalue Assignment

Among 'n prescribed eigenvalues, let. nr denote the number of t)rescribe(t real eigenvahms

A i (i = 1 2, ..., nr) and n.c the number of t)rescribed complex eig(mvalues ai 4-J_'i

(i= 1, 2, ..., no/2). Then write _4=T IAmT, and Am as in equation (A1), and define

whoFo

(l

/7,. -

,_<,>b;;'><<,.t4 ... <, <y]
<-,)l, ( ,><:,:,j

I 1<..,,,..+,,,,..,.,,,.+,,+<,,,...._,>,,,,,,+.,) ......... (,,,,,,<<.,,,>,,;,',,,)

[..,, •., jeel)m(1) <'(2)'_(h ... <_,,,.)mS. )

(((n, +l)m(Tb +1) + 1 in} ¢(,_Im(, I))

and

AI;) [_'<_>-- --1 .:n

[ (r)

- • / --1 ,q
L

A(r )
--2, rn

A(7:)
2.q

7"

A(r) ]--nr,q

7"

_,(r) (z(r) _(r) a (r) w(T)_ ] c_(°) -- Ira×m, _¢())--1,m --2.m --2.m "'" --_,r "2.zr -- n,,< 2.m ' --i,m _'i,n, OnI× nt

(=) cr('r) _,(r) a(r) (r} ] T
_'1 ,q --2,q _'2,q " " " --,,, / 2.q "°m'/2,q J (7(0i (0)

' i.q = ]q×q' _'_.(t : (}q×q

(B26)

Equation (B1) may be expressed as

p 1 p- 1

A (r) 'i 1) + D_L(i)y(i) = ci,,, _ A!,:),r,u(i - 7- - 1) + %,, 2_ -,,,.q;qt. - r -

r=0 "r 0

= 7mFm(i - 1) (i_27)
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where

The matrix
-- 77_ _Tll

i - 1)

7m= [ _-m _Pm D] Fro(i-l)= ]+9m(i-1) (B28)

L _(i)

p-1 /

Om(i- 1) = E _-_rlmu(i- r - 1) = c2m,mu_(i- p)

7=0 (B29)
p 1

+_,,,(i 1) Z___._!qy(i- T- 1)= __.,.qv_(i-p)
7=0

includes elements formed from both real and complex prescribed eigenvalues:

'_m I (B30)

where

AI,,,,_) ._(>2)--1 ,:n

A(t, 1) A(v-2)
2,m --2.m

A_(p-l) A(p-2)
r_r.m --rtr,m

_(1 ) I., × ,,+
1 .m

,k (1) [mx,,t
--2,m

A_(l) I,,,×.,
nr,Ht

o.(p 1) o'(P-2) ...... or(l) [m×m
--1 ,m --1 ,m --t ,m

_o(p- 1) _(p-2) ...... _2 (il._n 0m ×,,1
--1 ,m --I ,rn

0"(p-l) O-(p-2) ...... (7(1) [mxm
--2,m --2,m --2,m

,.0( p 1) W( p- 2) _,(1) Om×m
--2,m --2,m ...... _'2,m

(p 11 (p-2) ...... a(l)
_,,/2 .... _++/2....... 42.... l .......

(p-_) (p 2) Iti'-; ...... ()m x ,,+

(_.The diagonal matrices A! r) c*!r) co!r) in "..sin,r,, are of dimensions rn x m, i = 1 2, nr,
--_,_lt _ --l,Hl' _t,ITt ' " " " '

_ which is composedor no�2, and r = 1, 2, ..., p- 1. Similar structures apply for _m,q,

of the matrices A! r) a! r) co!r) of dimensions q x q instead. Tile recursive solution to the
---+,q ' --z,q ' --z,q

parameter matrix %n is obvious. Tile observer Markov parameters and the actual system Markov

paranmters are simply

L .m._..+,,j = [ r ] (B31)

T1 )= _m_rr+,m + [_,,t a--m,q r i I + _--m,qD (B32)

MIMO Deadbeat Eigenvalue Assignment

In the deadbeat case, all eigenvalues of the observer are placed at the origin• The

corresponding Markov parameters will vanish identically after n time steps. In other words,
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Yr = 0 for r = n, n + 1 n + 2, .... Let M d denote the deadbeat observer gain for the multiple-

input multiple-output case. The input-output description is given in terms of the observer

Markov parameters as

n- 1 _z- 1

Y(i)= E (C-ArB[t) u(i- r- 1)- E (C-Artlld) y(i- r- 1)+ Du(i)
r=0 r=0

n 1 r_-i

= Z Y(1)u(i - r - 1) - E Y(2)Y(i-

T=0 7"=0

= __du_(i -- n) + 3dy(i -- n) + Du(i)

= 7dPd(i -- 1)

r- 1)+Du(i)

(B33)

where in the above equation B' = B + MdD , -A = A + il.IdC, and

__(i - ,_)

7d = [C_d 3d D] Fd(i-1)= ]y(i-n)

L
(B34)

_t = [?_1) ?(1)1

(2)3d= F_ 2) Y1

(B35)

The nm x 1 input, history vector u(i - n) and the _Tq x 1 output history vector y(i - n) are

defined as in equations (63), except u(i) and y(i) are now rn x 1 and q x 1 vectors, respectively.

Note that in the deadbeat scheme, the observer Markov parameters are solved directly from

input-output data, and the actual system Markov parameters are then recovered simply as in
equation (20).
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Appendix C

The Mini-Mast Truss Structure

A modelobtainedby finite dement analysisof tile Mini-Mast truss structure(rcf. 21) is
usedas an examt)leto illustrate the identificationalgorithmsdevelopedin this paper. The
mathematicalmodelhas the first two bendingmodes,with practically tile samefrequencies
(0.8Hz); the first torsionalmode(4.3Hz); and the secondtwo bendingmodes(6.1Hz), again
with practicallythe samefrequencies.The inodelconsiderstwo inputsand two outputs. The
inputsaretwotorquewheelsfor the x and y axes, and the outputs are two displacement sensors

mounted at the top of the structure as shown in figure C1. Tile system frequencies and the

associated damping factors expressed as tile real parts of tile eigenvalues are listed in table C1.

Tat)le C1. Damping and Frequencies of

Truss Structure

Mode Damping factor Frequency, Hz

1

2

3
4

5

0.09

.09

.33

.38

.39

0.80

.80
4.36

6.10

6.16

The continuous-time system matrices are listed here. For ease of presentation, tile matrices are

subdivided and given below:

where

Al=

-8.918 x 10 -2

1.303 × 10 -'1

5.035

-4.100 x 10 5

-3.238 x 10 :_

4.008 x 10 :_

2.468 x 10 2

-9.585 x 10 -2

2.660 × 10 -2

-1.020 x 10 t

-1.330 x 1{}-I

-8.912 x 10 -2

1.540 x 10 -'l

-5.032

2.093 × 10 -a

-7.596 × 10 -a

-9.535 × 10 -2

-2.514 × 10 -2

-1.015 × 10 -1

-2.627 × 10 -2

-5.035

-1.474 x 10 -4

-9.212 x 10 -2

1.335 x 10 -4

3.540 x 10 -a

-4.048 x 10 -3

-2.691 x 10 -2

1.043 x 10 1

-2.617 x 10 .2

1.005 x 10 -]

4.756 × 10 -5

5.032

-1.293 x 10 4

-9.205 x 10 -2

7.388 x 10 -3

2.748 x 10 a

1.040 x 10 -1

-2.748 x 10 -2

-9.974 x 10 -2

-2.567 x 10 -2

9.106 x 10 ,1

1.309 x 10 -2

--1.403 x 10 -3

--1.540 x 10 -2

-3.251 x 10 -1

27.420

1.546 x 10 a

3.791 x 10 3

-3.283 × 10 -a

1.491 × 10 2
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A 2 =

-1.549 × 10 -3

1.527 × 10 2

1.214 × 10 -3

-1.412 × 10 -2

-27.420

-3.330 x 10 -1

2.839 × 10 -3

-1.320 × 10 -2

-2.834 × 10 -3

-2.657 × 10 3

5.498 × 10 a

-2.110 × 10 2

1.010 × 10 2

3.884 x 10-2

-9.447 × 10 3

-9.884 x 10 -3

-3.763 × 10 1

-5.956 × 10 -1

-38.364

1.011 × 10 1

-1.999 x 10 -2

-6.062 x lO -3

-3.766 × 10 -2

1.075 × 10 -2

1.774 × 10 -2

2.238 × 10 -2

5.972 x 10 1

-3.790 × 10 -1

4.638 × 10 2

-38.660

-9.892 × 10 -3

3.859 × 10 -2

-5.495 × 10-a

-2.179 × 10 -2

1.114 x 10 2

1.117 × 10 -2

38.364

-4.656 × 10 2

-3.912 × 10 1

5.986 × 10 -1

3.740 x 10 -2

1.079 × 10 -2

2.055 x 10 -2

-6.517 × 10 -3

-2.519 × 10 2

-2.125 × 10 -2

-1.010 x 10 -1

38.660

-5.969 x 10 -1

3.943 × 10 1

and

where

B

2.345 × 10 3 -1.996× 10 3

-2.101 × 10 -3 2.360 × 10:3

-2.349 × 10 3 1.999 × 10 -a

-2.015 × 10 -3 -2.364× 10 3

-1.052 × 10 4 -2.488× 10 -4

1.107 × 10 _1 2.455 × 10 ,1

1.667 × 10 3 9.519 x 10 -'1

-9.095 × 10 -1 1.554 x 10 -3

1.630 × 10 a 9.180× 10 ,1

-8.917× 10 1 1.509 × 10 a

[oooooooot
0.000 0.000 J

1.119× 10 -2 4.016x 10:3 1.122× 10 -2 -4.025× 10 3C1 = -9.114 × 10 3 7.620 × 10 -3 -9.136 × 10 -a -7.639 × 10 a

-9.177× 10 -3 -4.321× 10 -4 -2.448 x 10 -3 4.669 × 10 4
C2 =

-9.326 x 10 .3 -2.427 x 10 .3 1.965 × 10 -a 2.423 x 10 3

2.393 × 10 -3 ]

J-1.990 × 10 -:3

In the imnmrical examples, the system model is discretized at a sampling frequency of 33.3 Hz.
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